Cosa è un automorfismo?

Domanda di: Dott. Felicia Rizzi  |  Ultimo aggiornamento: 26 novembre 2021
Valutazione: 4.2/5 (57 voti)

In matematica, un automorfismo è un isomorfismo di un oggetto matematico in sé stesso. È, in un certo senso, una simmetria dell'oggetto, e un modo di mappare l'oggetto in sé stesso preservando tutte le sue strutture caratteristiche.

Cosa significa automorfismo?

In matematica, un automorfismo è un isomorfismo di un oggetto matematico in sé stesso. L'insieme di tutti gli automorfismi di un oggetto forma un gruppo rispetto alla composizione di funzioni, detto gruppo di automorfismi. ... È, informalmente, il gruppo di simmetria dell'oggetto.

Quando un'applicazione è un isomorfismo?

Si definisce isomorfismo un'applicazione biiettiva f tra due insiemi dotati di strutture della stessa specie tale che sia f sia la sua inversa f 1 siano omomorfismi, cioè applicazioni che preservano le caratteristiche strutture.

Che cosa significa endomorfismo?

In matematica, un endomorfismo di una struttura algebrica è una funzione dall'insieme sostegno della struttura in sé, che preservi le operazioni. In altre parole, è un morfismo della struttura algebrica in sé stessa.

Che significa Morfismo?

morfismo Ente matematico associato alle coppie di 'oggetti' di una data categoria. ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.

Cos'è l'emofilia?



Trovate 18 domande correlate

Quando un Omomorfismo e Suriettivo?

L'omomorfismo f : G → G `e suriettivo se e solo se im f = G . C'`e una condizione analoga per vedere se un omomorfismo `e iniettivo. Proposizione. Sia f : G → G un omomorfismo di gruppi; f `e iniettivo se e solo se ker f = {1}.

Come stabilire se un endomorfismo e un isomorfismo?

Proprietà degli endomorfismi

Gli endomorfismi godono di una proprietà fondamentale: un endomorfismo è iniettivo se e solo se è suriettivo. In altri termini, un endomorfismo è un epimorfismo se e solo se è un monomorfismo, o ancora un endomorfismo è un isomorfismo se e solo se è un monomorfismo oppure un epimorfismo.

Quando un endomorfismo e Autoaggiunto?

La matrice A∗ viene detta aggiunta di A. Ovviamente, se A è reale, allora A∗ =t A. Un endomorfismo f tale che coincida con il suo aggiunto (f∗ = f) si dice autoaggiunto. Quindi un endomorfismo è autoaggiunto se e solo se ∀v,w ∈ V si ha < f(v),w >=< v,f(w) > .

Quando un'applicazione lineare e un Automorfismo?

Un automorfismo è un particolare endomorfismo. E' una applicazione lineare tra uno spazio vettoriale in sé, iniettiva e suriettiva, è quindi una biezione.

Quando un'applicazione lineare è iniettiva o suriettiva?

L'applicazione ϕ si dice iniettiva se dati x ,x ∈ X con x = x si ha ϕ(x ) = ϕ(x ). l'applicazione ϕ si dice invece suriettiva se im(ϕ) = Y .

Quando una ripartizione planare e Isomorfa?

Due grafi sono isomorfi se hanno lo stesso ordine e la stessa dimensione. Questo significa che devono avere lo stesso numero di vertici e di archi.

Cosa sono i problemi Isomorfi?

isomorfismo termine che, nel linguaggio naturale, significa identità di forma; è utilizzato in diversi ambiti della matematica per identificare due strutture che, seppure sono “concretamente” diverse per origine o formalismo, hanno le stesse proprietà strutturali.

Come si vede se un applicazione è lineare?

In matematica, più precisamente in algebra lineare, una trasformazione lineare, detta anche applicazione lineare o mappa lineare, è una funzione lineare tra due spazi vettoriali sullo stesso campo, cioè una funzione che conserva le operazioni di somma di vettori e di moltiplicazione per uno scalare.

Quando un sottogruppo è normale?

In teoria dei gruppi, il sottogruppo normale (o invariante) è un sottogruppo in cui i laterali sinistro e destro di ogni elemento del gruppo coincidono.

Quando è che un Endomorfismo e simmetrico?

Per definire gli endomorfismi simmetrici abbiamo bisogno di uno spazio vettoriale finitamente generato nel campo dei numeri reali e di un prodotto scalare definito positivo su tale spazio.

Quando si può dire che un'applicazione lineare e Diagonalizzabile?

Un applicazione lineare T : Rn −→ Rn si dice diagonal- izzabile se esiste una base B per Rn (dominio e codominio) nella quale la matrice AT associata a T in tale base `e una matrice diagonale. ... Una matrice A si dice diagonalizzabile se esiste una matrice P invertibile tale che P−1AP `e diagonale.

Quando è che un'applicazione è lineare?

Una applicazione lineare è univocamente determinata quando si conoscono le immagini degli elementi di una base del dominio. sarebbe identicamente nulla. è costituito dal solo vettore nullo.

Cosa si intende per algebra lineare?

L'algebra lineare è la branca della matematica che si occupa dello studio dei vettori, spazi vettoriali (o spazi lineari), trasformazioni lineari e sistemi di equazioni lineari.

Come capire se una matrice e Hermitiana?

In algebra lineare una matrice hermitiana (dal nome del matematico francese Charles Hermite) o matrice autoaggiunta è una matrice a valori complessi che coincide con la propria trasposta coniugata (o matrice aggiunta). Le matrici hermitiane sono unitariamente equivalenti alle matrici diagonali reali. ...

Come stabilire se l endomorfismo e semplice?

Un endomorfismo diagonalizzabile, detto anche endomorfismo semplice, è un operatore lineare per cui è possibile determinare una base dello spazio su cui è definito tale che la matrice rappresentativa dell'endomorfismo rispetto ad essa sia una matrice diagonale.

A cosa serve il teorema spettrale?

Il teorema spettrale fornisce le condizioni per cui sia possibile diagonalizzare un operatore rispetto ad una base ortonormale. Quando questo risulta possibile nel caso finito-dimensionale, ad autovalori distinti corrispondono autovettori mutuamente ortogonali, e pertanto gli autospazi sono in somma diretta.

Quali caratteristiche hanno due sostanze Isomorfe?

L'isomorfismo è un fenomeno che si verifica quando due o più sostanze cristallizzate (dette isomorfe) hanno coincidenza o somiglianza nei caratteri geometrici dei loro cristalli, quando cioè cristallizzano nella stessa forma, hanno angoli uguali o vicini, hanno rapporti assiali simili e possono dare cristalli misti.

Quando due spazi vettoriali sono Isomorfi?

Due spazi vettoriali V e V si dicono isomorfi se esiste un isomorfismo f : V → V tra lo spazio V e lo spazio V . ... Infine se f : V → V e g : V → V ” sono isomorfismi allora tale e' anche l'applicazione composta g ◦ f : V → V ”.

Quando un Endomorfismo e invertibile?

Condizione necessaria e sufficiente affinché un endomorfismo A sia invertibile è la non singolarità di A. Dim. A è non singolare <=> kerA={0}<=>dim(kerA)=0<=>dimA(E)=dim(E), essendo A(E)=ImA (immagine di A). D'altra parte, A è anche iniettivo giacché kerA={0}, onde l'asserto.

Cosa vuol dire che una funzione è iniettiva?

In matematica, una funzione iniettiva (detta anche funzione ingettiva oppure iniezione) è una funzione che associa, a elementi distinti del dominio, elementi distinti del codominio.

Articolo precedente
Cos'è per socrate la verità?
Articolo successivo
Pignoramento con cessione del quinto in corso?