Per quali valori la funzione è differenziabile?

Domanda di: Penelope Russo  |  Ultimo aggiornamento: 16 dicembre 2021
Valutazione: 4.2/5 (18 voti)

Geometricamente, una funzione è differenziabile in un punto se esiste il piano tangente passante per il punto in un intorno del quale è possibile approssimarla linearmente.

Cosa vuol dire che la funzione e differenziabile?

In matematica, in particolare in analisi matematica e geometria differenziale, una funzione differenziabile in un punto è una funzione che può essere approssimata a meno di un resto infinitesimo da una trasformazione lineare in un intorno abbastanza piccolo di quel punto.

Cosa cambia tra differenziale e derivata?

Le derivate direzionali di una funzione indicano di quanto varia la funzione al primo ordine lungo un determinato vettore, mentre il differenziale è l'applicazione lineare che associa a quel vettore la variazione al primo ordine.

Come si calcola il differenziale di una funzione a due variabili?

Calcolo del differenziale

Il differenziale della funzione f(x,y) è semplicemente la somma delle derivate parziali, moltiplicate per il differenziale relativo. Questo metodo si applica invariato anche per funzione in n variabili con n qualsiasi.

Come si calcola il differenziale in un punto?

La definizione di differenziale in un punto

delta x: = x - x0; il differenziale della funzione enunciata, ovvero f(x) nel punto x0, è dato dal prodotto tra la derivata prima in x0 per delta x.

Quando una funzione si dice differenziabile?



Trovate 38 domande correlate

Cosa significa calcolare il differenziale?

Il calcolo differenziale studia le variazioni infinitesimali di una funzione. Una delle principali operazioni è la derivazione. Questa definizione è molto sintetica, forse troppo, e non rende chiara l'idea a chi si avvicina per la prima volta a questo concetto.

Come si calcola il differenziale di un integrale?

Esempio di differenziale

Per fare un esempio, supponiamo di dover integrare una funzione del tipo f(x)=x*cos(x^2+1) se chiamiamo t=x^2+1, troveremo dt=2x*dx e dovremo andare a compensare il "2" nell'integrale, ottenendo (1/2)*cos(t)*dt .

Come si dimostra che una funzione è differenziabile?

Geometricamente, una funzione è differenziabile in un punto se esiste il piano tangente passante per il punto in un intorno del quale è possibile approssimarla linearmente.

A cosa serve il differenziale di una funzione?

Il differenziale di una funzione in una variabile in un punto è una funzione lineare dell'incremento Δx calcolato a partire dal punto. Geometricamente il differenziale corrisponde all'incremento delle ordinate sulla retta tangente ottenuto a partire dal punto fissato.

Quando una F e differenziabile?

Teorema del differenziale Una funzione f(x) `e differenziabile nel punto x0 ∈ I se e solo se `e derivabile in x0 e df(x0)(h) = f (x0) · h per ogni h ∈ R.

Cosa si intende per differenziale esatto?

"In matematica, un differenziale dF è detto esatto se la funzione F esiste"; tuttavia la condizione di esistenza di F è necessaria ma, come vedremo, non sufficiente affinché il dF esista. ... Perciò nel caso di una sola variabile il dF esiste se F(x) ammette derivata prima e se questa è continua e quindi integrabile.

A cosa serve il calcolo infinitesimale?

Il calcolo infinitesimale è la branca fondante dell'analisi matematica che studia il "comportamento locale" di una funzione tramite le nozioni di continuità e limite, usato in quasi tutti i campi della matematica e della fisica, e della scienza in generale.

Chi ha inventato il calcolo differenziale?

Il calcolo differenziale fu descritto alla fine del diciassettesimo secolo da Isaac Newton e da Gottfried Leibniz.

Come si calcola il piano tangente?

Il piano in questione dovrà passare anche per il punto di tangenza e quindi la formula del piano tangente in un punto è la seguente: f (x, y)=f (x0, y0) fx (x0, y0)(x-x0) fy (x0, y0)(y-y0), dove è stato indicato con (x0, y0) il punto di tangenza e con fx la derivata parziale rispetto x della funzione calcolata ...

A cosa serve la matrice Hessiana?

1) ci permette di risparmiare il calcolo di alcune derivate parziali seconde miste (non male se si ha poco tempo ;) ) 2) può essere uno strumento di verifica di calcolo. Se infatti, supposto che fxy sia continua e, andando a calcolare fyx troviamo qualcosa di diverso da fxy vuol dire che abbiamo sbagliato qualcosa.

Cosa significa differenziabili?

definizione di differenziabile nel dizionario italiano

La definizione di differenziabile nel dizionario è che si può differenziare. Differenziabile è anche di funzione che ammette il differenziale.

Cosa fa il differenziale in una macchina?

Il differenziale autobloccante è un organo della trasmissione che distribuisce la coppia tra le ruote motrici. Può essere montato in posizione centrale, tra l'asse anteriore e quello posteriore delle auto a trazione integrale, oppure anche al centro di ciascuno di questi, sulle auto a due ruote motrici.

Che cos'è un differenziale a bassa sensibilità?

Differenziali a bassa sensibilità: quando la corrente che determina l'intervento è maggiore di 0,03Ampere (30mA). ... Vengono anche chiamati "salvavita" in quanto la corrente che attraverserebbe un corpo umano, in caso di guasto, fa intervenire l'interruttore a soglie di corrente non pericolose per la persona.

Cosa sono i teoremi del calcolo differenziale?

Sia f(x) una funzione continua in un intervallo [a, b] e derivabile in (a, b). Se la derivata della funzione è sempre positiva, allora la funzione è crescente in senso stretto in [a, b]. Se la derivata della funzione è sempre negativa, allora la funzione è decrescente in senso stretto in [a, b].

Cosa vuol dire che una funzione è lineare?

In matematica, per funzione lineare si intende: Nel calcolo infinitesimale, una funzione polinomiale di grado zero o uno. In algebra lineare e analisi funzionale, una trasformazione lineare.

A cosa serve il rapporto incrementale?

è un numero che, intuitivamente, misura "quanto velocemente" la funzione cresce o decresce al variare della coordinata indipendente attorno a un dato punto.

Che significa che una funzione è C1?

Ad esempio una funzione di classe C1(A) è una funzione derivabile su A con derivata prima continua su A. In particolare una funzione appartenente alla classe C(A) si dice funzione liscia, ed è una funzione derivabile infinite volte su A con tutte le derivate continue su A.

Come calcolare dt negli integrali?

Integrazione per sostituzione
  1. Si pone t=g(x)
  2. Si pone dt=g'(x) dx oppure dx=g'(t) dt.
  3. Si calcola l'integrale rispetto alla variabile t.
  4. Si riscrive la primitiva in funzione di x.

Come si risolvono gli integrali per sostituzione?

Gli integrali per sostituzione sono integrali da calcolare mediante il metodo di sostituzione: si passa ad una nuova variabile indipendente mediante una sostituzione del tipo t=g(x), in modo da semplificare l'integranda e gli estremi di integrazione.

Quando si integra per parti?

La formula di integrazione per parti (o teorema) è un utile risultato della teoria degli integrali secondo Riemann che permette di calcolare agevolmente integrali definiti e indefiniti, nel caso in cui l'integranda sia data dal prodotto di funzioni in cui una delle due è una derivata facile da integrare.

Articolo precedente
Qual è la percentuale di ossigeno ottimale?
Articolo successivo
Perché il mio cane mi mordicchia le mani?