Quali sono le applicazioni comuni del deep learning in Artificial Intelligence?

Domanda di: Loredana Ferraro  |  Ultimo aggiornamento: 28 aprile 2022
Valutazione: 4.6/5 (8 voti)

Oggi i sistemi di apprendimento profondo, fra altre utilità, permettono di identificare oggetti nelle immagini e nei video, trascrivere il parlato in testo, e individuare e interpretare gli interessi degli utenti online, mostrando i risultati più pertinenti per la loro ricerca.

Quali sono le applicazioni comuni del Deep Learning in Artificial Intelligence ai )?

Dalla computer vision per le auto senza conducente, fino ai droni e robot impiegati per la consegna di pacchi o anche per l'assistenza in casi di emergenza (per esempio per la consegna di cibo o sangue per trasfusioni in zone terremotate, alluvionate o in zone che devono affrontare crisi epidemiologiche, ecc.); ...

Che differenza c'è tra machine learning e Deep Learning?

algoritmo: il machine learning ha un algoritmo variabile; il deep learning si basa su una rete neurale di algoritmi; campo di applicazione: il machine learning viene utilizzato nelle operazioni di routine; il deep learning trova applicazione nei compiti complessi.

Cosa vuol dire Deep Learning?

In altre parole, il Deep Learning è una tecnica di apprendimento in cui si espongono reti neurali artificiali a vaste quantità di dati, in modo che possano imparare a svolgere compiti.

Cosa possono fare con il Deep Learning?

Con il Deep Learning vengono simulati i processi di apprendimento del cervello biologico attraverso sistemi artificiali (le reti neurali artificiali, appunto) per insegnare alle macchine non solo ad apprendere autonomamente ma a farlo in modo più “profondo” come sa fare il cervello umano dove profondo significa “su più ...

Apprendimento profondo in 5 minuti | Cos'è il deep learning? | Il deep learning spiegato semplicemente | Simplilearn



Trovate 15 domande correlate

Qual è un esempio di valore creato attraverso l'uso del deep learning?

Dare ad una macchina una serie di immagini bidimensionali e ricevere rielaborata la stessa scena ma in modalità tridimensionale: quanto creato grazie al Deep Learning sarà simile a quanto vedrebbe l'occhio umano se fosse immerso all'interno della scena reale, grazie alla riproduzione digitale in 3D.

A cosa servono le reti neurali?

In termini pratici le reti neurali sono strutture non-lineari di dati statistici organizzate come strumenti di modellazione. Esse possono essere utilizzate per simulare relazioni complesse tra ingressi e uscite che altre funzioni analitiche non riescono a rappresentare.

Cosa vuol dire machine learning?

Il Machine Learning (ML) è un sottoinsieme dell'intelligenza artificiale (AI) che si occupa di creare sistemi che apprendono—o migliorano le performance—in base ai dati che utilizzano. Intelligenza artificiale è un termine generico e si riferisce a sistemi o macchine che imitano l'intelligenza umana.

Cosa si intende per adversarial learning?

L'Adversarial learning (o apprendimento automatico in ambiente ostile) è un nuovo campo di ricerca che sorge dall'intersezione tra il campo dell'apprendimento automatico e la sicurezza informatica.

Come fa l'intelligenza artificiale a riconoscere un gatto?

Se invece si vuole addestrare a riconoscere un oggetto all'interno di immagini, ad esempio un gatto, si mostra l'immagine del gatto alla macchina, e se non lo riconosce la si corregge, comunicandole che invece si tratta proprio di un gatto. A quel punto il sistema si adegua, si corregge automaticamente e costantemente.

Che differenza c'è tra intelligenza artificiale e machine learning?

AI (artificial intelligence), intelligenza artificiale, significa far sì che un computer imiti in un qualche modo il comportamento umano. Machine learning, apprendimento automatico, è invece un sottoinsieme dell'intelligenza artificiale. ... In breve, esso consente ai computer di risolvere problemi più complessi.

Cosa rappresentano Artificial Intelligence e machine learning?

L'obiettivo finale dell'AI (artificial intelligence) è quello di creare dei computer con capacità di ragionamento simili (se non uguali) all'essere umano. Il machine learning, invece, è l'algoritmo che permette alle macchine intelligenti di migliorarsi con il tempo, esattamente come avviene con il cervello umano.

A cosa serve l'intelligenza artificiale?

L'intelligenza artificiale (IA) è l'abilità di una macchina di mostrare capacità umane quali il ragionamento, l'apprendimento, la pianificazione e la creatività. ... I sistemi di IA sono capaci di adattare il proprio comportamento analizzando gli effetti delle azioni precedenti e lavorando in autonomia.

A cosa si riferisce l acronimo NLP?

Natural Language Processing (NLP): come funziona l'elaborazione del linguaggio naturale. Tra i sistemi di Intelligenza Artificiale, il Natural Language Processing (NLP) rientra tra le soluzioni software che negli ultimi anni hanno registrato maggiori progressi.

Qual è una pietra miliare che ha portato alla nascita dell'Intelligenza Artificiale come campo di ricerca?

La pietra miliare dell'Intelligenza Artificiale può essere considerata il convegno del 1956 a Darmouth College, nel New Hampshire, in cui si riunirono i principali luminari dell'informatica. L'obiettivo era creare una macchina capace di imitare e simulare perfettamente l'apprendimento ed il comportamento umano.

Come funziona una CNN?

Una rete neurale convoluzionale (CNN o ConvNet) è un'architettura di rete per il deep learning che apprende direttamente dai dati, eliminando la necessità di estrarre manualmente le feature. Le CNN sono particolarmente utili per individuare pattern nelle immagini per il riconoscimento di oggetti, volti e scene.

Che tipo di algoritmo di machine learning effettua previsioni?

Un algoritmo di supervised learning prende un insieme noto di dati di input e di risposte note ai dati (output) e addestra un modello per generare previsioni ragionevoli per la risposta ai nuovi dati. Il supervised learning si utilizza se si dispone di dati già noti per l'output che si sta cercando di “prevedere”.

Quando usare machine learning?

Utilizzare il machine learning per le seguenti situazioni: Non è possibile codificare le regole: Molte attività umane (ad esempio riconoscere se un'e-mail è spam o non spam) non possono essere svolte adeguatamente utilizzando una semplice (deterministica) soluzione basata su regole.

Come si chiama quel tipo di machine learning in grado di trovare strutture nei dati?

Nell'ambito dell'informatica, l'apprendimento automatico è una variante alla programmazione tradizionale nella quale in una macchina si predispone l'abilità di apprendere qualcosa dai dati in maniera autonoma, senza istruzioni esplicite.

Cos'è una rete neurale fornire qualche esempio?

Una rete neurale (in inglese neural network) è un modello matematico composto da neuroni artificiali di ispirazione alle reti neurali biologiche (quella umana o animale) e viene utilizzate per risolvere problemi ingegneristici di Intelligenza Artificiale legati a diversi ambiti tecnologici come l'informatica, l' ...

Come sono collegati i neuroni?

La connessione tra neuroni è garantita dalle sinapsi, che possono collegare gli assoni di un neurone con i dendriti, l'assone o il soma di un altro neurone.

Cosa è il bias nelle reti neurali?

Il termine Bias è proprio delle rete neurali artificiali, e deve essere inteso come caratterizzante ogni singolo neurone della rete. Perciò nel complesso la rete sarà costitutita da diverse biases. ... In altre parole, il bias determina se e in quale misura il neurone debba attivarsi (neuron fires).

Quale termine dell'intelligenza artificiale AI è usato per descrivere l'estrazione di informazioni da testi non strutturati usando algoritmi?

Il data mining (letteralmente dall'inglese estrazione di dati) è l'insieme di tecniche e metodologie che hanno per oggetto l'estrazione di informazioni utili da grandi quantità di dati (es. banche dati, data warehouse, ecc.), attraverso metodi automatici o semi-automatici (es.

Quale termine di intelligenza artificiale viene utilizzato per descrivere l'estrazione di informazioni da testo non strutturato utilizzando algoritmi?

Il Natural Language Processing è una disciplina che si pone a metà tra l'informatica, l'intelligenza artificiale e il moderno concetto di “data mining”.

Come nasce l'Intelligenza Artificiale?

L'intelligenza artificiale ha una data di nascita ufficiale, il 1956, l'anno del famoso seminario estivo tenutosi presso il Dartmouth College di Hanover nel New Hampshire durante il quale la nuova disciplina venne fondata programmaticamente, a partire dalla raccolta dei contributi sviluppati negli anni precedenti e in ...

Articolo precedente
Dove nasce la pianta dei lupini?
Articolo successivo
Chi paga le spese di registrazione di una sentenza?