Teorema su derivabilità e continuità?

Domanda di: Sig.ra Maria Lombardo  |  Ultimo aggiornamento: 20 dicembre 2021
Valutazione: 4.4/5 (9 voti)

In parole povere: - se una funzione è continua in un punto, può essere derivabile nel punto, ma non lo sarà per forza. Se però una funzione non è continua in un punto, non è certamente derivabile nel punto. - Se una funzione è derivabile in un punto, sarà sicuramente continua in tale punto.

Come si fa a capire se una funzione e derivabile?

Una funzione f è derivabile in un punto del dominio quando la derivata destra e la derivata sinistra esistono, sono finite e uguali. Una funzione f non è derivabile se la derivata destra f ′ ( x ) + f'(x)^+ f′(x)+ è diversa dalla derivata sinistra f ′ ( x ) − f'(x)^- f′(x)−.

Come si calcola la continuità e la Derivabilità di una funzione?

In termini pratici, è sufficiente (e un po' più semplice) individuare gli eventuali punti di discontinuità prima e di non derivabilità poi. Per valutare la derivabilità, bisogna controllare che i due limiti, sinistro e destro, del rapporto incrementale della funzione nel punto esistano finiti e uguali.

Come si fa a verificare la continuità di una funzione in un intervallo?

Funzione continua in un intervallo

Una funzione f(X) si dice continua nell'intervallo [A,B] se è continua in ogni punto dell'intervallo (A,B) e sugli estremi si ha limite di f(X) per X che tende ad A destro uguale a f(A) e limite di f(x) per X che tende a B sinistro uguale a f(B).

Cos'e la derivata prima di una funzione?

La definizione di derivata, o derivata prima di una funzione in un punto, prevede di definire la derivata come limite del rapporto incrementale della funzione nel punto al tendere dell'incremento a zero. Considerando un generico punto, la derivata prima può essere altresì definita come una funzione.

Derivabilità e continuità, il teorema.



Trovate 19 domande correlate

Che cosa rappresenta la derivata di una funzione?

La derivata di una funzione in un punto è il coefficiente angolare della retta tangente alla curva nel punto. Si tratta quindi di un numero che misura la pendenza della retta tangente.

Come spiegare in modo semplice le derivate?

La derivata è uno dei concetti basilari dell'analisi matematica. La derivata descrive come varia una funzione f(x) quando varia il suo argomento x. Più in generale, la derivata esprime la variazione di una grandezza rispetto a un'altra: il campo di applicazioni è vastissimo.

Come si fa a stabilire se una funzione è continua?

Se voglio verificare che la funzione f (x) sia continua nel punto x=x1 basta verificare che il limite destro e sinistro per x che tende a x1 di f (x) siano uguali tra loro e uguali a f (x1). Se la risposta è affermativa, la funzione è continua in x1, altrimenti no.

Come si fa a capire se una funzione è continua?

Una funzione continua è, per definizione, continua in ogni punto del proprio dominio. Una funzione che non è continua è detta discontinua, e i punti del dominio in cui non è continua sono detti punti di discontinuità.

Quali sono le funzioni continue?

Sono continue tutte le funzioni elementari (polinomi, potenze, esponenziali, logaritmi, e le funzioni trigonometriche) e tutte le loro composizioni.

Come si determina il dominio di una funzione?

Il dominio di una funzione è l'insieme su cui è definita la funzione, ossia l'insieme di partenza sui cui elementi ha senso valutare la funzione. Nella pratica è possibile determinare il dominio di una qualsiasi funzione reale di variabile reale mediante una serie di semplici regole.

Come faccio a trovare i punti di non Derivabilità?

Come trovare i punti di non derivabilità
  1. determina il dominio della funzione.
  2. Calcola la derivata prima e determinane il dominio.
  3. Confronta il dominio della derivata prima e quello della funzione.

Cosa vuol dire che una funzione è differenziabile?

Geometricamente, una funzione è differenziabile in un punto se esiste il piano tangente passante per il punto in un intorno del quale è possibile approssimarla linearmente.

Come capire dove è derivabile una funzione?

Una funzione derivabile in un punto è una funzione per cui esiste la derivata prima nel punto considerato: più precisamente, una funzione è derivabile in un punto se esistono finiti e coincidono il limite sinistro e destro del rapporto incrementale calcolato nel punto.

Come si fa a vedere se una funzione è derivabile in un intervallo?

Una funzione f si dice derivabile in un intervallo, se è derivabile in ogni punto dell'intervallo. Se l'intervallo comprende uno o entrambi gli estremi, su di essi si considererà ovviamente solo la derivata sinistra o destra.

Come si fa a capire se una funzione è integrabile?

Una funzione integrabile su un intervallo [a,b] è una funzione per cui esiste l'integrale definito sull'intervallo, ossia per cui l'integrale inferiore e l'integrale superiore sull'intervallo esistono finiti ed uguali.

Quando la funzione non e continua?

Una funzione che non è continua in un punto si dice discontinua. Quando la continuità esiste in tutti i punti di un intervallo, la funzione si dice continua nell'intervallo. non è continua in x=2. definita e di conseguenza il limite non può essere uguale a f(0) perché quest'ultimo valore non esiste.

Come si fa a capire se una funzione e continua e derivabile?

In parole povere: - se una funzione è continua in un punto, può essere derivabile nel punto, ma non lo sarà per forza. Se però una funzione non è continua in un punto, non è certamente derivabile nel punto. - Se una funzione è derivabile in un punto, sarà sicuramente continua in tale punto.

Quando due funzioni sono continue?

A parole, una funzione è continua in un punto di accumulazione se: - i due limiti sinistro e destro esistono finiti ed hanno lo stesso valore; - il comune valore dei due limiti sinistro e destro coincide con la valutazione della funzione nel punto.

Come si fa a capire se una funzione è positiva?

A destra dell'intersezione il grafico sta al di sopra dell'asse x, quindi la funzione è positiva, a sinistra dell'intersezione il grafico sta al di sotto dell'asse x, quindi la funzione è negativa.

A cosa serve il rapporto incrementale?

è un numero che, intuitivamente, misura "quanto velocemente" la funzione cresce o decresce al variare della coordinata indipendente attorno a un dato punto.

Quando c'è un asintoto verticale?

In modo più rigoroso: La retta x=a è un asintoto verticale per la funzione f(x) se almeno uno dei limiti destro o sinistro per x che tende ad a è divergente (fa più o meno infinito). I punti “candidati” a ospitare asintoti verticali sono quelli che non appartengono al dominio (buchi o estremi).

Come fare la derivata di una funzione?

Per calcolare la derivata di una funzione polinomiale semplice, prendete in considerazione un termine alla volta; di questo termine prendete il grado (l'esponente sull'incognita) e moltiplicatelo per il coefficiente che compare davanti alla x; poi abbassate quello stesso grado di 1 e ponetelo come esponente della x.

A cosa serve la derivata seconda?

Geometricamente la derivata prima è la pendenza della tangente a una curva; la derivata seconda misura quindi l'incremento della pendenza; se la pendenza diminuisce la curva pende sempre più verso il basso e quindi abbiamo concavità verso il basso (vedi figura a lato).

Come nasce il concetto di derivata?

Il concetto di derivata di una funzione, è scaturito dal celebre problema della ricerca delle tangenti ad una curva in un suo punto, che ha lungamente impegnato i matematici prima di Newton e Leibnitz. ... La pendenza della curva in un punto P è la pendenza della retta tangente alla curva tracciata nel medesimo punto P.

Articolo precedente
Come si chiama il verso del mulo?
Articolo successivo
Molluschi terrestri quali sono?