Funzioni convesse in un intervallo?
Domanda di: Bibiana Coppola | Ultimo aggiornamento: 25 settembre 2021Valutazione: 4.4/5 (31 voti)
Una funzione di f : I → R `e detta convessa se, considerato un qualsiasi intervallo [x1,x2] ⊆ I, il valore che la funzione assume in corrispondenza dei punti di tale intervallo `e non maggiore del valore che gli stessi punti ricevono dall'equazione della corda congiungente i punti (x1,f(x1)) e (x2,f(x2)).
Come vedere se una funzione e convessa su un intervallo?
Una funzione f(x) è convessa se in un intervallo [a,b] se per ogni punto x0∈[a,b] il grafico della funzione in [a,b] è al di sopra della retta tangente al grafico nel punto (x0,f(x0).
Quando una funzione e convessa nel suo dominio?
Una funzione convessa è tale se il segmento che congiunge due punti qualsiasi del suo grafico giace sopra il grafico stesso o coincide con una sua parte. Una funzione concava è tale se il segmento giace al di sotto del grafico o coincide con una sua parte.
Come si calcola la concavità di una funzione?
Concavità e derivata seconda
È intuitivo che se una funzione f ammette derivata seconda f " in c allora il grafico di f è strettamente concavo verso l'alto in (c, f(c)) se f "(c) > 0 e che il grafico di f è strettamente concavo verso il basso in (c, f(c)) se f "(c) < 0.
A cosa serve la derivata seconda?
Geometricamente la derivata prima è la pendenza della tangente a una curva; la derivata seconda misura quindi l'incremento della pendenza; se la pendenza diminuisce la curva pende sempre più verso il basso e quindi abbiamo concavità verso il basso (vedi figura a lato).
Flessi, Concavità e Segno della Derivata Seconda
Trovate 45 domande correlate
Che cosa rappresenta la derivata di una funzione?
rappresenta il tasso di cambiamento di una funzione rispetto a una variabile, vale a dire la misura di quanto il valore di una funzione cambi al variare del suo argomento.
Come si vede se c'è un punto di flesso?
Un punto di flesso per una curva o funzione è un punto in cui si manifesta un cambiamento di convessità o di segno di curvatura.
Quando la concavità è rivolta verso l'alto?
concavita' e convessita' In generale vale la regola: se la derivata seconda e' positiva la concavita' e' verso l'alto. Per ricordarmela, siccome ho il vizio di confondermi, penso sempre alla parabola: infatti la derivata seconda di y = x2e' 2 cioe' e' positiva e la parabola volge la concavita' verso l'alto.
Come si trovano i flessi di una funzione?
- calcolare la derivata seconda della funzione f ′ ′ ( x ) f''(x) f′′(x);
- studiare la concavità della funzione, cioè studiare il segno della derivata seconda f ′ ′ ( x ) ≥ 0 f''(x) \ge 0 f′′(x)≥0:
Come faccio a capire se una funzione è crescente o decrescente?
Una funzione crescente su un intervallo è una funzione che assume valori crescenti al crescere dei valori di ascissa; al contrario, una funzione decrescente è una funzione che assume valori decrescenti al crescere dei valori di ascissa nell'intervallo.
Quando una funzione e convessa derivata?
è convessa se e solo se comunque si prendano due punti del suo grafico, il segmento che li congiunge sta al di sopra del grafico stesso. Si dirà invece concava se e solo se il segmento che congiunge due punti qualsiasi del grafico sta al di sotto di quest'ultimo. La funzione in blu nel grafico è una funzione convessa.
Che cosa vuol dire concavo e convesso?
Una figura geometrica è convessa se, presi due punti qualsiasi A e B al suo interno, il segmento che li congiunge è contenuto tutto all'interno della figura. Una figura è concava se, presi due dei suoi punti A e B, i punti sono estremi di un segmento che non è tutto contenuto all'interno della figura.
CHE COSA SONO I punti stazionari?
Geometricamente un punto stazionario è l'ascissa di un punto del grafico della funzione in cui la retta tangente è parallela all'asse delle ascisse. In blu, la retta tangente al punto di minimo, in verde la retta tangente al punto di flesso a tangente orizzontale, in rosso la retta tangente al punto di massimo.
Come vedere la crescenza di una funzione?
La derivata prima di una funzione può essere utile per stabilire se la funzione è crescente, decrescente o costante. Questo può essere stabilito andando a studiare il segno della derivata prima della funzione. > ′ 0 xf f crescente.
Come trovare flessi a tangente obliqua?
- punto di flesso a tangente obliqua: viene individuato con lo studio della derivata seconda. potrebbero manifestarsi delle variazioni di convessità, come ad esempio può succedere in presenza di un asintoto verticale. Ad ogni modo tali punti non potranno considerarsi come punti di flesso.
Come si fa a vedere se una funzione è continua?
Una funzione si dice continua se é continua in ogni punto del dominio di appartenenza. Da quanto detto si deducono facilmente i seguenti risultati. Le funzioni razionali sono continue in tutti i punti del loro campo di definizione ad esclusione dei valori che annullano il denominatore.
Come si trovano i massimi ei minimi?
I punti di massimo sono quelli t.c. f'(xi)=0 mentre f'(x)>0 a sinistra di xie f'(x)<0 a destra; I punti di minimo sono quelli t.c. f'(xi)=0 con f'(x)<0 a sinistra di xie ,f'(x)>0 a destra. Invece se la derivata nell'intorno di tali punti non cambia di segno, questi non sono nè di massimo nè di minimo.
Come si trova un punto di flesso a tangente orizzontale?
I punti di flesso che si trovano sono flessi a tangente orizzontale solo se le ascisse di tali punti annullano sia la derivata seconda che la derivata prima, altrimenti sono flessi a tangente obliqua. tangente al grafico della curva negli eventuali punti di flesso obliqui ( .
Come si calcola il flesso obliquo?
La verifica del punto di flesso obliquo
Porre quindi la derivata seconda maggiore e uguale a zero facendo in modo da ottenere un risultato. Se la derivata non si annulla nel punto in cui avviene l'inversione della concavità del grafico allora ci si troverà in presenza di un punto di flesso obliquo.
Che cos'e la concavità di una parabola?
Il parametro a, che è sempre diverso da zero, determina la concavità della parabola. In particolare, se a > 0 a > 0 a>0 la parabola è rivolta verso l'alto, mentre se a < 0 a < 0 a<0 la parabola è rivolta verso il basso.
Cos'e la concavità?
concavità s. f. [dal lat. tardo concavĭtas -atis]. – L'esser concavo, configurazione concava: la c. ... concr., parte concava, cavità: l'umida salsedine pareva creare nelle c.
Quando la concavità verso il basso?
In altre parola concavità verso l'alto equivale a dire derivata prima crescente e quindi derivata seconda maggiore di zero. Analogamente si ricava che concavità verso il basso equivale a dire derivata prima decrescente e quindi derivata seconda minore di zero.
Come si calcola la derivata di una funzione?
Ogni volta che abbiamo un coefficiente che moltiplica una funzione, se dobbiamo derivare il tutto è sufficiente riscrivere il coefficiente e derivare solamente la funzione. 2) La derivata di una somma/differenza di funzioni è uguale alla somma/differenza delle singole derivate.
Cosa è la derivata prima?
La definizione di derivata, o derivata prima di una funzione in un punto, prevede di definire la derivata come limite del rapporto incrementale della funzione nel punto al tendere dell'incremento a zero. Considerando un generico punto, la derivata prima può essere altresì definita come una funzione.
Perché si studiano le derivate?
Le derivate infatti descrivono il tasso di variazione istantanea di una funzione rispetto alla sua variabile, per cui risolvono tutti quei problemi in cui si cerca di misurare la velocità di cambiamento di una determinata grandezza fisica. ...
Come diventare psicologo dell'età evolutiva?
Spirulina per quanto tempo assumerla?