Come capire se una funzione è concava o convessa?

Domanda di: Thea Lombardo  |  Ultimo aggiornamento: 10 dicembre 2021
Valutazione: 4.4/5 (1 voti)

Una funzione convessa è tale se il segmento che congiunge due punti qualsiasi del suo grafico giace sopra il grafico stesso o coincide con una sua parte. Una funzione concava è tale se il segmento giace al di sotto del grafico o coincide con una sua parte.

Come trovare concavità e convessità?

è convessa se e solo se comunque si prendano due punti del suo grafico, il segmento che li congiunge sta al di sopra del grafico stesso. Si dirà invece concava se e solo se il segmento che congiunge due punti qualsiasi del grafico sta al di sotto di quest'ultimo.

A cosa serve la derivata seconda?

Geometricamente la derivata prima è la pendenza della tangente a una curva; la derivata seconda misura quindi l'incremento della pendenza; se la pendenza diminuisce la curva pende sempre più verso il basso e quindi abbiamo concavità verso il basso (vedi figura a lato).

Come si trova un punto di flesso?

La regola standard per calcolare un possibile punto di flesso come segue: "Se la derivata terza non è uguale a 0, allora f ′′′(x) ≠ 0, il possibile punto di flesso è effettivamente un punto di flesso." Controlla la tua derivata terza. Se non è uguale a 0 nel punto, è un flesso reale.

Come si trova un punto di flesso a tangente orizzontale?

I punti di flesso che si trovano sono flessi a tangente orizzontale solo se le ascisse di tali punti annullano sia la derivata seconda che la derivata prima, altrimenti sono flessi a tangente obliqua. tangente al grafico della curva negli eventuali punti di flesso obliqui ( .

Flessi, Concavità e Segno della Derivata Seconda



Trovate 15 domande correlate

Come si calcola il flesso obliquo?

La verifica del punto di flesso obliquo

Porre quindi la derivata seconda maggiore e uguale a zero facendo in modo da ottenere un risultato. Se la derivata non si annulla nel punto in cui avviene l'inversione della concavità del grafico allora ci si troverà in presenza di un punto di flesso obliquo.

Che cosa rappresenta la derivata di una funzione?

La derivata di una funzione in un punto è il coefficiente angolare della retta tangente alla curva nel punto. Si tratta quindi di un numero che misura la pendenza della retta tangente.

A cosa serve la derivata prima e seconda?

L'analisi della funzione con le derivate

In particolar modo, la derivata prima permette di stabilire la crescenza o la decrescenza. La derivata seconda, invece, consente di riconoscere la concavità e la convessità delle curve, i tratti rettilinei, i punti di massimo e di minimo, i flessi.

Cosa succede se la derivata seconda è uguale a zero?

Derivata seconda, concavità e punto di flesso di una funzione: esempi ed esercizi svolti. ... I punti in cui la curva passa attraverso la retta tangente sono i punti di flesso. Nei punti di flesso, la derivata seconda è nulla. Per trovarli si può porre la derivata seconda uguale a zero.

Come determinare la convessità di una funzione?

Una funzione è convessa in un intervallo, cioè volge la concavità verso l'alto, se comunque scelti due punti del grafico all'interno di questo intervallo il segmento che li congiunge sta sopra il grafico della funzione.

Quando una funzione si dice concava e convessa?

Una funzione concava: presi due punti del grafico, il segmento che li congiunge si trova al di sotto del grafico stesso.

Come si fa a vedere se una funzione e convessa?

Funzione convessa

Una funzione f(x) è convessa se in un intervallo [a,b] se per ogni punto x0∈[a,b] il grafico della funzione in [a,b] è al di sopra della retta tangente al grafico nel punto (x0,f(x0).

Quando la derivata e uguale a zero?

La derivata di una costante, o meglio la derivata di una funzione costante, è uguale a zero e si calcola usando la definizione di derivata come limite del rapporto incrementale.

A cosa servono le derivate terze?

Le derivate di ordine superiore al primo sono le derivate di una funzione ottenute reiterando la derivazione, a partire dalla derivata prima: si definiscono così la derivata seconda, terza, quarta e più in generale ennesima.

Cosa e la derivata prima?

La definizione di derivata, o derivata prima di una funzione in un punto, prevede di definire la derivata come limite del rapporto incrementale della funzione nel punto al tendere dell'incremento a zero. Considerando un generico punto, la derivata prima può essere altresì definita come una funzione.

Dove si annulla la derivata?

I punti in cui si annulla la derivata sono da studiare con particolare attenzione: infatti, potrebbero rivelarsi punti di massimo/minimo relativo o di flesso a tangente orizzontale. Attenzione! Per trovare i punti in cui si annulla la derivata, non è necessario risolvere un'equazione a parte (f' (x)=0).

Come si calcola la derivata di una funzione?

Ogni volta che abbiamo un coefficiente che moltiplica una funzione, se dobbiamo derivare il tutto è sufficiente riscrivere il coefficiente e derivare solamente la funzione. 2) La derivata di una somma/differenza di funzioni è uguale alla somma/differenza delle singole derivate.

Come capire se ce un flesso?

DEFINIZIONE: si dice che nel punto P0 la curva ha un punto di flesso se in tale punto essa attraversa la tangente t in P0,cioè nell'intorno sinistro di x0 la curva si trova al di sotto della retta tangente t e nell'intorno destro si trova al di sopra di t o viceversa.

Quanti tipi di flesso ci sono?

possiamo distinguere fra flessi ascendenti (dove la funzione e' concava a sinistra e convessa a destra) e flessi discendenti (con funzione convessa a sinistra e concava a destra). Nell'esempio ho disegnato un flesso ascendente. Diremo che un flesso e' orizzontale quando la tangente di flesso e' orizzontale.

Come si trovano i flessi obliqui con le tangenti?

- punto di flesso a tangente obliqua: viene individuato con lo studio della derivata seconda. potrebbero manifestarsi delle variazioni di convessità, come ad esempio può succedere in presenza di un asintoto verticale. Ad ogni modo tali punti non potranno considerarsi come punti di flesso.

Quando la derivata è uguale a 1?

La derivata di 1 è uguale a zero, infatti 1 è una costante e la derivata di una costante è pari a zero. La derivata di 1, e più in generale la derivata di una costante, rientra tra le derivate fondamentali, quindi è una di quelle derivate che si danno per buone.

Come si trovano i punti angolosi?

Se i due limiti esistono finiti ma sono diversi, o se uno dei due limiti è infinito e l'altro noin x 0 x_0 x0 si ha un punto angoloso. Se i due limiti sono entrambi uguali a +∞ o −∞, in x 0 x_0 x0 si ha un flesso a tangente verticale. Se i due limiti sono uno +∞ e l'altro −∞, in x 0 x_0 x0 si ha una cuspide.

Perché la derivata di una costante e zero?

Dimostrazione. Data una funzione f(x) definita nell'intervallo (a,b) e un generico punto x del dominio. Per qualsiasi valore del dominio, la funzione f(x) restituisce sempre lo stesso valore k. Ho così dimostrato che la derivata di una costante è zero.

Quale figura geometrica può essere sia concava che convessa?

Il piano è sempre una figura convessa, perché presi due punti qualsiasi, il segmento che li congiunge è interamente contenuto nel piano. Viceversa, un angolo può essere sia concavo che convesso.

Come faccio a capire se una funzione è crescente o decrescente?

Una funzione crescente su un intervallo è una funzione che assume valori crescenti al crescere dei valori di ascissa; al contrario, una funzione decrescente è una funzione che assume valori decrescenti al crescere dei valori di ascissa nell'intervallo.

Articolo precedente
Come rassodare la pancia molle dopo il parto?
Articolo successivo
Come si fa un aggiornamento al telefono?